LexA-DNA Bond Strength by Single Molecule Force Spectroscopy
نویسندگان
چکیده
منابع مشابه
LexA-DNA bond strength by single molecule force spectroscopy.
The SOS system of Escherichia coli is coordinated by two proteins: LexA, a repressor protein of several unlinked genes, and the coprotease RecA. As known to date LexA controls 31 genes with slightly different DNA binding motifs allowing for a variable degree of repression from one gene to the other. Besides the SOS system LexA plays an important role in the regulation of transcription. The prot...
متن کاملDNA base pair resolution by single molecule force spectroscopy.
The forces that hold complementary strands of DNA together in a double helix, and the role of base mismatches in these, are examined by single molecule force spectroscopy using an atomic force microscope (AFM). These forces are important when considering the binding of proteins to DNA, since these proteins often mechanically stretch the DNA during their action. In AFM measurement of forces, the...
متن کاملSingle Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy
Recent developments in piconewton instrumentation allow the manipulation of single molecules and measurements of intermolecular as well as intramolecular forces. Dextran filaments linked to a gold surface were probed with the atomic force microscope tip by vertical stretching. At low forces the deformation of dextran was found to be dominated by entropic forces and can be described by the Lange...
متن کاملQuantifying DNA melting transitions using single-molecule force spectroscopy.
We stretched a DNA molecule using atomic force microscope and quantified the mechanical properties associated with B and S forms of double-stranded DNA (dsDNA), molten DNA, and single-stranded DNA (ssDNA). We also fit overdamped diffusion models to the AFM time series and used these models to extract additional kinetic information about the system. Our analysis provides additional evidence supp...
متن کاملProbing DNA clamps with single-molecule force spectroscopy
Detailed mechanisms of DNA clamps in prokaryotic and eukaryotic systems were investigated by probing their mechanics with single-molecule force spectroscopy. Specifically, the mechanical forces required for the Escherichia coli and Saccharomyces cerevisiae clamp opening were measured at the single-molecule level by optical tweezers. Steered molecular dynamics simulations further examined the fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2004
ISSN: 0006-3495
DOI: 10.1529/biophysj.104.048868